Disruption of glucose sensing and insulin secretion by ribozyme Kir6.2-gene targeting in insulin-secreting cells.
نویسندگان
چکیده
The ATP-sensitive K+ (KATP) channel, composed of Kir6.2 and sulfonylurea receptor (SUR1), in pancreatic beta-cells is believed to serve as a metabolic sensor regulating insulin secretion according to glucose levels. Thus, genetic disruption of Kir6.2 expression may impair KATP channel function in glucose sensing and insulin secretion. Here we show evidence obtained from functional genetic assays supporting this hypothesis. To avoid adaptive cellular mechanisms in transgenic preparations, we designed a hammerhead ribozyme that specifically targeted the Kir6.2 mRNA at serine 78. The Kir6.2-ribozyme was constructed in an adenoviral vector and expressed in insulin-secreting RINm5F cells. Both RT-PCR and Northern blot analyses showed that Kir6.2 transcripts were significantly reduced with a Kir6.2-ribozyme treatment. Whole-cell patch-clamp studies indicated that the Kir6.2-ribozyme treatment lowered KATP channel density by 66%. In response to higher glucose challenge, insulin release from the RINm5F cells dropped by approximately 20% in a transfection dose of 0.7 multiplicity of infection, and by 30-40% in a dose of 2.7 multiplicity of infection. These results therefore indicate that KATP channels play an important role in glucose sensing and insulin secretion, and ribozyme Kir6.2-gene targeting is an effective approach for selective inhibition of functional expression of KATP channels.
منابع مشابه
The role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملDifferentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell
Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...
متن کاملتمایز بنیاختههای جنینی انسان به سلولهای مولد انسولین
Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...
متن کاملThe effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...
متن کاملDefective insulin secretion and enhanced insulin action in KATP channel-deficient mice.
ATP-sensitive K+ (KATP) channels regulate many cellular functions by linking cell metabolism to membrane potential. We have generated KATP channel-deficient mice by genetic disruption of Kir6.2, which forms the K+ ion-selective pore of the channel. The homozygous mice (Kir6.2(-/-)) lack KATP channel activity. Although the resting membrane potential and basal intracellular calcium concentrations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 145 9 شماره
صفحات -
تاریخ انتشار 2004